Looper (v.8) program description

Written by Alex Avramenko on 5t of August 2012. King’s College London.
aaavramenko@gmail.com +447411565631.

#  C\Users\alexanderavramenko\Desktop\Looper 9. E’_@‘éj

m >

THHHHE THHHHE T THHEHHEE THHHHH
i 13 i i i i i i
i 12 i i i i i i
i 12 i 121212131302 bi2i2i2i8i213 0 1212133180
i 12 i i i # #i
i 12 B 3 i i i # H

1213121313131 bi3i2i2:3 1) 1313121314 i bidi2i2i3i2:3:d i3 i

Introduction.
The purpose of the program is to use a ready input text file, to permute it, and to
feed it in to Ray/Reflec. An input text file is simply the text that one would type

using the keyboard, ad verbatim, in to the Ray/Reflec program, saved as a text
file.

Key features.

-Can run up to 180 loops.

-Stores up to 350 lines of feed.

-Can permute in 2 Dimentions.

-Can write a simple sequence between specified values.

Disclamer.

[ am a novice programmer and also had very little time to write the program.
There are bound to be many bugs and errors. None the less [ hope in the current
state the program will still be useful for a wide range of uses.



Sample input file.

NO
NO

GR
620
620
0
Au
0
19.3

88.45 .
86.08 12 permutations

100 |
-1

; v
90
10152025232221191817 16

0.65

n Enter for
Reflec

yes
53
7
128
yes
no
yes
1
yes
1

3
1015202523222119181716
EXIT

Editor.

To the left is a Reflec input text file (.txt). The
permutations are entered on the same line, and the
next input is put in on the following line. In this case
one might select the number of runs as 12.

If an enter is required to skip something in
Ray/Reflec, an enter can be put in the text file.

Process of the program.

The program starts with asking the user for the
number of runs of the program.

[t will then create a matrix where each line is a row of
that matrix, and each run is a column.

This matrix will then be fed with the input file.

Once the user is done editing the matrix in editor
mode, the program crates Run text files (Runl,
Run2,...). These run text files are then fed to
Ray/Reflec using the simple Terminal command:
Ray.exe < Runl.txt, Ray.exe < RunZ.txt ... and so on.
Once all the run files have been run, the program will
then delete them. (It will pause just before to give you
time to have a look at what the program created to
catch any errors).

If (yes) has been selected to the question of whether to edit the file, then the
editor mode will be entered. If enter is pressed the editor goes to next line.
There are five options here:

Value (v)

A value that will be the same for all runs.

Jump (j)

Allows to jump to another line. For example if on line 14: entering 3 will skip to
17, entering -5 will go back to 9, entering -15 will cause the program to crash,
entering a number larger than the last line will cause to skip the editor.



Sequence (s)

Here one will be prompted to put in the first number and the last number of
wanted sequence. For example if runs= 5, the first number is 1 and the last
number is 3, the sequence will be:

First number in-between last number
1 15 2 25 3.
Manual (m)

Will give the option to put in values one by one for each run. Does not yet work
well for large amount of runs.

File (f) (2 dimensional uploading)

Allows uploading a file with parameters. The file should be in the same directory
as Ray/Reflec. Cannot read enter as a new line.

Here the user will have three options for the amount of values to put in. One can
put the amount as: positive number, negative number or zero. This will affect the
way the program treats the number.

Positive number

This will read the specified amount of values and repeat them in a string way.
For example the following is entered: (runs= 15), (amount=5) (file reads: a, b,c
d, e, f, g..) --- instead of commas the file should have each value on a new line.
The program will then read:

abcde

and will dispatch it to Ray/Reflec as follows:

abcde abcde abcde .

Zero

This will just read the file for the reps required. For example if (runs=15) (file
reads: a,b,cd, e, f, g...)

The program will then read:

abcdefghijklmno

Negative number

This will read the amount of values specified and will repeat each value reps
times.

For example if the following is entered: (runs= 15), (amount= -5), (reps= 3) (file
reads: a,b,cd, e, f, g...)

The program reads:

abcde

and will dispatch it to Ray/Reflec as follows:

aaabbbcccdddeee

2 Dimensional matching.

If 2 dimentional variation is required (lets say for a grating 5 energies and for
each energy 10 profiles), then the File option can be used in the Editor.

One would first create two text files each with the parameters, then one would
input then in the editor mode as follows (selecting option f):



INPUT FFILE ( Spaces
are real entries)

Energy eV
500
600
5 700
150 800
150
900
-1
88.4907 Profile nm
86.0780
177.25 1
2
3
4
15 5
6
7
8
9
53 10
7
3
abc.txt
3 /
15
9

Example of use.

The Energy is entered as amount=5 and Profile is
entered as amount=-10, reps=5. Thus one must
also enter the runs as 50 (10*5).

The abc.txt file should also be provided with
Looper and contains 1000 permutation of three
alphabetic letters, to make sure the name of the
saved file always varies.

Multiple ASCI files can be most easily read
with Origins(the really old version) and
then for ease of use can simply be copied

in to excel.

Looping many things at once.
[ have noticed that the Looper program does
not use the full capacity of the computer when
running. Since running the full 1000 loops can
take almost an hour (on my computer, running
Reflec), one can actually just copy and paste a
few Ray/Reflec folders and run a few Loopers at
the same time. For | managed to run 6 Loopers
at one time without slowing down my
computer too much, but it really depends on
the machine.

Below is described one example of use.



Profile optimisation for each angle. Done

0.45
04 fo ating. -t |
PRRRIG- a5
0.35 =
. 6
:l).ZS R A e
£ 0.2 .‘A__;__“‘.:Z 9
C05 % y o 10
' , L R K, 11
0.1 3 ;&7,.;_3&“ e v i 12
0.05 o s 3& AT 7o _?{7_13
\ s 67. g . 14
R - EITSSEL NSt

Profile nm.

Fig. 1 An example of use of Looper program. Each point on the diagram is a run of
Reflec. In total 759 runs. (24, 288 enter clicks if done manually)

As can be on Fig. 1 is an example of the use of Looper program. The aim was to
find the optimal angle. For each angle however only the optimal profile was
required. This meant that for several angles the graphs of their efficiency
dependence on profile, had to be constructed. This can be done with 5 runs of
Looper. It took around half an hour for the whole run on my machine as I ran
them in separate folders at the same time.

Memory management.

Unfortunately due to the unforeseen memory management problem, the
program uses one matrix to store all its values. This means that it is limited to
1,000,000 units of code.

This means that it is limited to:

180 runs.

16 characters per unit.

350 lines of input.

This will be the first thing I will try to update in this program and if need be you
can freely set this parameters in the source code for your own use.

Just remember that runs * character per line * lines of input = 1,000,000 .
// rows* columns * senence_sizew = 1,000,000

#define ARRAY_SIZE_rows 350

#define ARRAY_SIZE_columns 180

#define SENTENCE_SIZE 16



