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Abstract 
 
 
 
 

This report gives an overview about the BESSY software tools available for calculations of 
crystal optics. This library has been developed in the last months for the design of the BESSY 
II x-ray optics beamlines. This report is not intended to be a handbook for the available 
programs REFLEXE, DIXI1 and RAY, but summarizes the main features and equations of 
the dynamical theory of x-ray diffraction. Examples for the calculation of rocking curves for 
symmetrically and asymmetrically cut crystals are shown. 
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Introduction 
 
 The raytracing is one of the major and most powerful tools of up-to-date methods of 
synchrotron radiation beamline design. The cost and complicity of equipment and 
instrumentation involved is so high, that preliminary design studies under realistic conditions 
play an extremely important roll. At the BESSY GmbH in the last few years several useful 
programs for the design of synchrotron radiation beamlines have been developed. BESSY-I 
was constructed only for UV-, VUV and soft x-ray radiation employing mainly grating 
monochromators and only one crystal monochromator. BESSY-II, however, will provide not 
only VUV beamlines, but also some relatively high energy beamlines, probably up to 50 
KeV. Thus, the need for hard X-ray optics has become considerable.  
 The goal of this work was to study X-ray optics, particularly from the point of view of 
developing a raytracing code for crystals as optical elements and X-ray diffraction as the 
physical process. 
 For this propose it was thought to be appropriate to apply the dynamic theory of X-ray 
scattering. This is a classic theory developed long time ago by Ewald and later elaborated by 
other workers. Only recently, with the advent of synchrotron radiation sources and good 
quality crystals, it has become possible and necessary as well to apply the dynamic theory of 
X-ray diffraction to actual experimental phenomena. The basic theory was reviewed and a 
unified formulation was prepared bringing together all the relevant formulae along with their 
limitations. This ground work was important as it can not only be of help in developing the 
raytracing code but also be useful for further theoretical developments.  
 Numerical programs for crystal diffraction rocking curve calculations have been kindly 
provided by the X-ray optics group at the University of Jena (PC code DIXI1) and by the 
Institute of Physics in Prague (VAX code REFLEXE). These programs were used and 
extensively studied from the point of integrating them into our raytracing code. Finally, 
incorporating the basic theory and using ideas from other programs as well as employing the 
basic structure of the RAY program our own program was developed and tested. It is now 
incorporated in the RAY program and can be used for simulating a synchrotron beamline with 
crystals as optical components in addition to other usual components such as mirrors, 
gratings, foils, slits etc. RAY is thus a real and quick alternative to the widely used 
synchrotron radiation raytracting program SHADOW. 
 
 
Theoretical background. Dynamical theory of X-ray diffraction 
 
    Scattering of X-rays by a solid is essentially a perturbative phenomenon caused by 
interaction of incident electromagnetic radiation with the electrons in the scatterer. Diffraction 
can be thought of as a special case of scattering when the electron density in the scatterer is a 
periodic function of position. The scattering cross section is then non zero for directions 
satisfying the well known Laue equations, and, for a spatially very large scatterer, the angular 
distribution of scattered X-rays is given by a number of delta functions centred around the 
Bragg angles. This approach is known as the kinematic theory of diffraction and it usually 
ignores both absorption (at low energies mostly due to the photoelectric effect) and extinction 
(removal of intensity from the primary beam due to Bragg reflection) of X-rays in the 
scatterer. It is a very good first approximation for small crystals.  
    The intensity of scattered radiation from a crystal parallelepiped of edges  N N N1 1 2 2 3 3a a a, , , 
where a a  are the basis vectors of the direct lattice unit cell and a1 2 3, , N N N1 2, , 3 are positive 
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integers characterising the size of the crystal, is obtained by using standard time dependent 
perturbation theory as 
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where I0 is the intensity of radiation scattered by a single electron, F  is the unit cell structure 
factor and s is the scattering vector given by 
 
                                        s k k= −i s, 
                             

                                     k ki s= =
2π
λ

,                                                                               (2) 

 
k ki , s  being the incident and the scattered wave vectors. The maximum value of the intensity 
occurs for directions corresponding to 
 
                                  s a⋅ = =i iH i2 1 2 3π , , , .                                                                        (3) 
 
Here H si '  are three integers entirely independent of one another. Thus when the Laue 
equations (3) are satisfied the intensity of scattering becomes  
 
                            I I F N H H HH H H= ≡0

2 2
1 2 3, , ,I N.                                                             (4) 

 
We have shown the dependence of the scattered intensity on the direction by explicitly 
putting the subscript H. In eq.(4) N N N N= 1 2 3 is the number of unit cells in the crystal and FH  
is the value of the structure factor for  s sH=  satisfying eq.(3):  
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where f j j,r  refer to the atomic structure factor and position of the j th atom in the unit cell 
and the summation runs over all the atoms in the unit cell. b b  are the reciprocal  lattice 
vectors defined by 
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    Consider the scattered intensity in the close vicinity of the Bragg angle θB   corresponding 
to  
 
                                            s s .                                                                                (6) vH= +
 
 Then 
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Smoothing out the oscillations in IH  by replacing the factor sin
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The magnitude of  s   is related to Bragg angle by H

 
                                   sH =

4π
λ

θsin B                                                                                   (9) 

 
and if v corresponds to change ϕ   in the scattering angle i.e.   2 2θ θ ϕB B→ + ,  then 
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2
≡

π
λ
ϕ θcos B vIN                                                                     (10) 

and 
                                            v A                                                                               (11) ⋅ ≈ vD,
 
where D is the average linear dimension of the crystal. Then 
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and the angular full width at half maximum  ∆Θ  is given by 
 

                                    ∆Θ =
2λ

θ πD
n

Bcos
.IN

l 2                                                                   (13) 

 
    The above expression for the width of the diffraction peak is experimentally valid only for 
small crystals of the order of about  10 4−  cm or so. It is not satisfactory for big good crystals 
presently employed in X-ray optics and instrumentation. Although the intensity formula of 
eq.(7) is a good first approximation, it does no more yield either the correct shape or the width 
of the diffraction peak. One can in principle include the effects of absorption in the kinetic 
approach by including them in the atomic (and hence crystal) structure factors. However, the 
extinction effects involve consideration of the reduction in the incident intensity due to Bragg 
reflection when the Laue equations are exactly or very nearly satisfied.. Thus the general 
theory should involve the interaction between the incident and the scattered radiation. When 
this coupling is taken into account one solves it for a self consistent solution involving the 
different diffracted and incident waves in the crystal. The problem essentially reduces to that 
of dispersion theory and it leads one to the general or dynamical theory of X-ray diffraction. 
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    The fundamental equations of the dynamical theory essentially correspond to the Maxwell 
equations inside the scatterer - a single crystal. It is simpler to consider the wave equation for 
the displacement vector  
 

                          ∇× ∇× = −( ) ,1 1 2

2ε
∂
∂

D D
c t

                                                                         (14) 

 
where ε  is the dielectric constant of the crystal. In general;ε  is a tensorial quantity, however, 
we shall treat it to be a scalar as is commonly done. This is essentially the Laue model of 
diffraction theory.ε  can be put in terms of crystal polarisability α as 
 
                                   ε πα ψ= + ≡ +1 4 1 .                                                                         (15) 
 
    For X-ray frequencies  ψ   is negative and 
 
                                      10 14− ≈ <<ψ .                                                                             (16) 
 
The refractive index n  is equal to the square root of the dielectric constant: 
 
                                     n = ≈ +ε 1 1

2
.ψ                                                                            (17) 

The polarisability α  or rather  ψ   is related to the atomic scattering factor by 
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In (18) N  is the number of unit cells per unit volume in the crystal, the summation over j  
runs over all the atoms in the unit cell and f1 2,   are the real and imaginary parts of the atomic 
scattering factor given by 
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In (19) Z is the atomic number, E is the photon energy and µ  is the photo absorption cross 
section 
 

                                          µ
ρ
µ=

At
N l

0

,                                                                               (20) 
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where At N l, , ,0 ρ µ   refer respectively to  atomic weight, Avagadro number, density and linear 
absorption coefficient. A better approximation for the atomic structure factor would replace Z 
by the form factor f0   given by 
 

                        f U r kr
kr

dr k0
0

4
= ≡

∞aHMHM HMsin , sinπ
λ

Θ                                                            (21) 

 

                            ≅ Z   for   sin .ΘHM
λ

≤ 0 05A-1 

 

                            ≅ 0 9. Z   for  sin .ΘHM
λ

≈ 0 1A-1. 

 
In (21)  U rHM, 2Θ   refer to the radial atomic charge distribution function and the scattering 
angle respectively. 
    It is also customary to introduce yet another response function  χ   through the definition 
 
                                                 4π χP D=                                                                          (22) 
so that 
                                          χ ε πα ψ= − ≅ =−1 41 .                                                              (23) 
 
    In the Laue model the polarisability as well as the dielectric constant and χ ψ,  are periodic 
functions of the position and can be expanded in a Fourier series over the reciprocal lattice 
vectors: 
 
                                          χ χ= ⋅∑ G

G

G rexp ,iHM                                                               (24) 
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χG  is then seen to be proportional to the structure factor FG given by eq.(5) with  s  i.e.  GH →
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Ω  is the unit cell volume. The component corresponding to G = 0 is the average response 
function 
                                               χ0 2= − ∆ .                                                                             (27) 
 
    Fourier expanding the displacement vector and the polarisability, from eq.(14) we obtain 
 
            k k D k D k k DH H H G H G H H G H G

G
i
2 2 2− = ⋅ −− −∑K P I Nχ χ .                                           (28) 
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Eq.(28) is the fundamental system of equations of the dynamical theory.k  is the incident 
wave vector and 

i

kH  is the diffracted wave vector from planes  H = H H H1 2 3, ,I N. 
 
                              k k b b bH = + + +i H H H2 1 1 2 2 3 3π .                                                      (29) 
 
It is readily seen that 
                                            D k                                                                              (30) H H⋅ = 0
 
so that all the waves are of transverse type and a particular Fourier component gets admixed 
with other components due to the response of the crystal. 
 
    The simplest application of eq.(28) corresponds to the situation when there is only one 
wave in the crystal, i.e. just the transmitted radiation, the geometry being such that  for the 
particular incident wavelength under consideration Laue equations are not satisfied for any 
direction of scattering. Then the only non zero Fourier coefficient corresponds to G = 0 
Putting G H  in eq.(28) we have = = 0
 
                                     k k ki t

2 2
0

2− = − tχ                                                                        (31) 
so that 

                                         k k
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2
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∆IN.                                                             (33) 

 
In (31) - (33) we have put the subscript  t  to indicate that the wave is the transmitted one 
corresponding to H = 0, and it is clear that the refractive index for the incident wave 
corresponds to the average refractive index for the crystal. 
 
    The most common application of eq.(28) corresponds to the case of two waves in the 
crystal, one transmitted or refracted and the other diffracted. Thus there are two non zero 
Fourier components, for G  (say), and denoting the zeroth component as before by 
subscript t eq.(28) gives rise to following two coupled equations:  

H= 0,
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From eq.(34) it is clear that D  lies in the same plane as H k DH , t .These equations can be 
converted to two coupled scalar equations by taking the scalar products of the first equation 
with D  and the second equation with  D . For further simplification put t H

 
                         k k k kHt i t i

2 2 2 21 2 1 2= + H= +κ κI N I N,                                                         (35) 
 
and keep only first order terms in polarisability. We then get 
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where  is the angle between DΦ kHt and . For s-polarisation D  is normal to the plane 

containing 
t

k kHt  and so that  Φ =
π
2

. In p-polarisation Φ Θ Θ Θ= −
π
2

2 ,  where 2 = 2  is theB  

scattering angle. Thus we shall consider only the case of s-po sa and set lari tion  sin ΦHM= 1. 
For p-polarisation replace χ χ χ χH H H H and  every where with  and − −cos cos2 2Θ ΘB BIN IN. 
    The condition for existence of a solution of the simultaneous system of equations (36) is 
the vanishing of the determinant of the coefficients. Taking into consideration the linear 
relation between κ κt  and H  this leads to a quadratic equation for κ t  and its two solutions give 
rise to two transmitted waves and also correspondingly two diffracted waves. A linear 
combination of these waves is selected by application of the boundary conditions at the 
surface of the crystal.  
Let the external incident wave enter the crystal medium through the boundary , where 

.is the unit normal to the crystal surface pointing in the crystal. At this boundary it must join 
smoothly with internal incident wave. This requires 

$n ⋅ =r 0
$n

 
                                                D D Et t i, 1 2+ =
  
where subscripts 1 and 2 refer to the two solutions for the transmitted waves respectively. 
This boundary condition does not, however, uniquely determine the internal incident and 
diffracted waves and an additional boundary condition needs to be imposed. This additional 
boundary condition is different for the Laue and Bragg cases, for the former there is no 
diffracted wave coming out of the crystal on the same side as the incident wave and for the 
latter there is no diffracted wave getting transmitted through the crystal. For the Bragg case of 
our interest the boundary condition is  
 
                             c x D c x D n Tt t1 1 1 2 2 2 0+ = ⋅ =at $ r ,                                                            (37) 
 
where T is the crystal thickness. 
    The intensity IH  of the Bragg reflected wave corresponding to diffraction from planes 
H = H H H1 2 3, ,I N in terms of the incident intensity I0  is then obtained as  
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In eq.(37), (38) 
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                                       κ χ1 2 0

21
2, = − ± +z q z .                                                           (43) 

 
In the above equations $  are direction cosines for the incident and diffracted beams. , $l li d

    Eq.(38) is the basic equation for calculating the rocking curve of a crystal for the case of 
Bragg diffraction. It is customary to consider the reflecting power of the crystal which is the 
ratio of diffracted power to the incident power: 
 
                                                   P

P
S I
S Ii i i

H H H= ,                                                                (44) 

 
where  S SiH ,   refer to the cross section of the diffracted and incident beams respectively. If 
the linear width of the incident beam is large compared to the depth of penetration in the 
crystal 
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so that 
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For zero absorption Eq.(38) then becomes 
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 for s - polarisation and  for p - polarisation.
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When the quantity under the radical sign in eq.(47) is negative the sine function gets replaced 
by a hyperbolic sine function.  The centre of the diffraction pattern given by eq.(47) does  not 
coincide with ideal Bragg angle Θ  ; it occurs at B

 

                                             Θ
ΘB

B

b
b

+
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2 2 0sin
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For the Bragg case of our interest since b  is negative and so is χ0 , this deviation  implies that 
the glancing angle for the centre of diffraction pattern is always greater than the Bragg angle. 
 
    For the general case when absorption is not neglected  the polarisability is complex and can 
be written as 
 

9 



                                           χ χ χ χ= +1 2 1 2i ; , real .                                                              (50) 
 
Expanding χ1 2,   in Fourier series 
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The average refractive index is then given by 
 
                                              n i= + +1 1
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1
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1
0
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and is complex, the imaginary part being related to the true linear absorption coefficient by 
 
                                                   µ π

λ
χ0 0
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= − . 

 
 The reflected power for the Bragg case can then be written in a more convenient form as 
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    When the true absorption is negligible, i.e. in the limit of η = =g 0 we get the famous 
Darwin solution: 
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    From eq.(51) it follows that the diffraction pattern is asymmetrical with respect to its centre 
at y=0 unless η = 0. The diffracted intensity is maximum at  y

g
=
η   and the corresponding 

glancing angle is 
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Thus there is an additional shift of the Bragg angle as compared to eq.(49). The total angular 
width of the reflection is then seen to be given by 
 

                                  ∆Θ
Λ Θ

Λ
Ω Θ

= ≡
λ π

λsin
,

cos
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IN
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It is interesting to compare the kinematical expression for the angular width eq.(13) with the 
dynamical expression of eq.(57). The former tends to zero as the crystal size increases. This 
of course cannot occur in practice due to attenuation of X-rays in the crystal. According to the 
dynamic theory the maximum attenuation distance is about 1 πHMINΛ Θtan B . 
 
 
Test of the computer code 
 
    A computer code for raytracing has been developed using the formulation described above. 
The program is integrated in the general raytracing code RAY at BESSY. 
 Typical X-ray reflectivity curves obtained using our program are attached herewith for 
illustration. The program allows for asymmetrical Bragg reflection from plane crystals and 
gives the profile of the reflected X-ray intensity. The raytracing code was applied for the 
calculations of Si(311) asymmetrically and symmetrically cut crystals. The angle of 
asymmetry was chosen to 15 and -15 degrees. In the figure 1 the comparative results between 
RAY and DIXI1 codes for the two polarisation states σ and π are shown. RAY results in this 
figure are represented by the noisy curve. The statistics is determined by the number of rays 
calculated. (1.000.000 incident rays, distributed into 100 channels).  

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.2

0.4

0.6

0.8

1.0

θ" - θ"B

15 deg.
0 deg.-15 deg.

Comparison DIXI1 - RAY

σ- polarisation
Si 311, 10 KeV

R
ef

le
ct

iv
ity

 
Fig.1a Rocking curves of Si(311) crystal with asymmetric cut (15° and -15° and symmetric cut 

(0°) for σ-polarisation. RAY code: statistical curve, DIXI1 code: solid line. 
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Fig.1b Rocking curves of Si(311) crystal with asymmetric cut (15° and -15°and symmetric cut 

(0°) for π-polarisation. RAY code: statistical curve, DIXI1 code: solid line. 
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